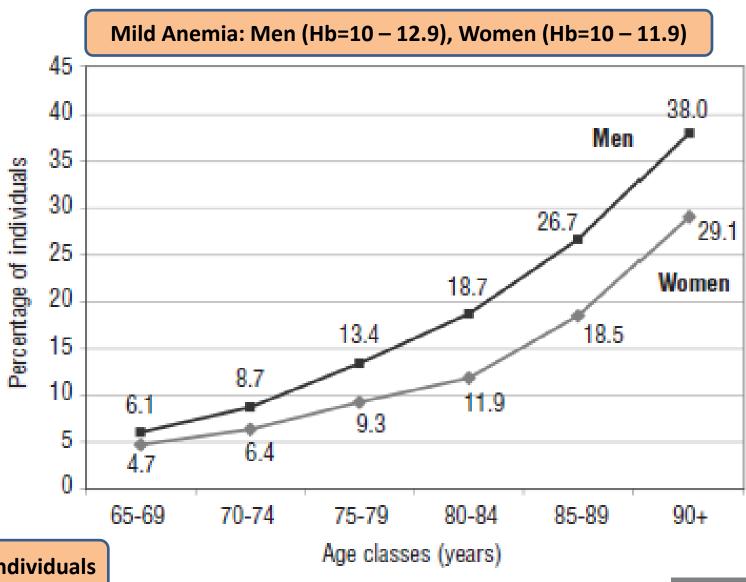
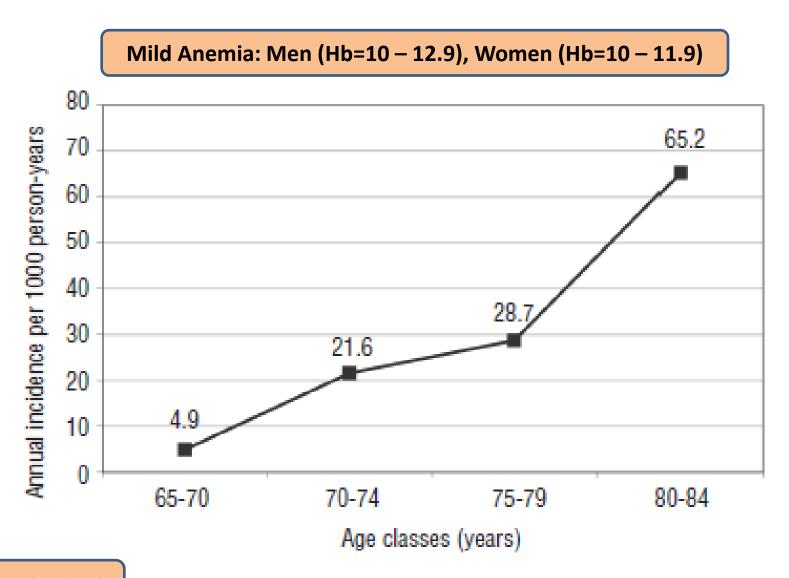
### Αναιμία και γήρας


Παναγιώτης Τσιριγώτης Αναπληρωτής Καθηγητής Αιματολογίας Β-Προπαιδευτική Παθολογική Κλινική Πανεπιστημιακό Γενικό Νοσοκομείο "ΑΤΤΙΚΟΝ" Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

## WHO: Hemoglobin concentrations for the diagnosis of anemia and assessment of severity


 The concentration of Hb that defines the presence of anemia in the elderly would be:

- ✓ <13 g/dl in men
- ✓ <12 g/dl in women

### Prevalence, incidence and types of mild anemia in the elderly: the "Health and Anemia" population-based study



### Prevalence, incidence and types of mild anemia in the elderly: the "Health and Anemia" population-based study



### **Prevalence of Anemia**

• Third US National Health and Nutrition Examination Survey(NHANES III, Phases 1 and 2, 1988–1994; 26,372 individuals), the prevalence of anemia in individuals:

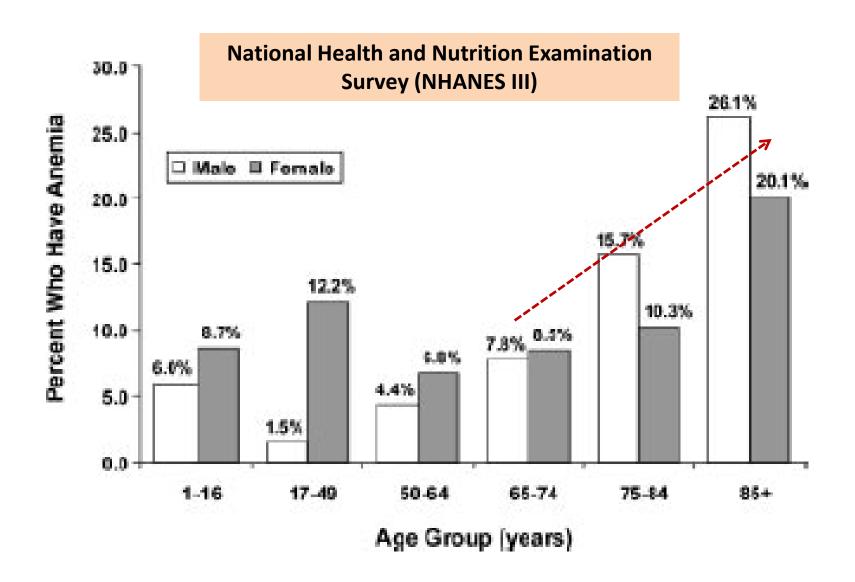
```
✓ ≥65 years: 10.6%
```

 $\checkmark$  65 − 74 years: 8%

✓ 75–84 years: 13%

✓ >85 years: 23%

√ higher among men


EMPIRE Study-Portugal (1617 individuals):

√ ≥65 years, men (22.2%), women (19.9%)

✓ 65–79 years: 17.3%

✓ ≥80 years: 31.4%

Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia



## Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia

- Anemia resulting from Nutrient Deficiency
  - ✓ Iron Deficiency
  - ✓ B12 Deficiency
  - ✓ Folate Deficiency
- Anemia of Chronic Inflammation (ACI)
  - ✓ Low serum iron with normal or increased iron stores
- Anemia due to Renal Insufficiency
  - ✓ GFR < 30ml/min
- Unexplained Anemia

### Differential diagnosis between Iron deficiency Anemia and Anemia of Chronic Disease

| Parameters                                | Iron Deficiency<br>Anemia | Anemia of Chronic Disease | Iron Deficiency<br>Anemia and<br>Chronic Disease |
|-------------------------------------------|---------------------------|---------------------------|--------------------------------------------------|
| Serum Iron                                | $\downarrow \downarrow$   | $\downarrow \downarrow$   | $\downarrow \downarrow \downarrow$               |
| Ferritin                                  | $\downarrow \downarrow$   | $\uparrow$                | N                                                |
| Transferrin (Total Iron Binding Capacity) | 个个                        | $\downarrow$              | ↓, N, ↑                                          |
| Transferrin saturation (%)                | $\downarrow \downarrow$   | $\downarrow$              | $\downarrow\downarrow$                           |
| Soluble TFR                               | 个个                        | N                         | <b>↑</b>                                         |

Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia

### Distribution of types of anemia in persons > 65 years

| Anemia                                      | No. in the United States | Type, % | All anemia, % |
|---------------------------------------------|--------------------------|---------|---------------|
| With nutrient deficiency                    |                          |         |               |
| Iron only                                   | 467 000                  | 48.3    | 16.6          |
| Folate only                                 | 181 000                  | 18.8    | 6.4           |
| B <sub>12</sub> only                        | 166 000                  | 17.2    | 5.9           |
| Folate and B <sub>12</sub>                  | 56 000                   | 5.8     | 2.0           |
| Iron with folate or B <sub>12</sub> or both | 95 000                   | 9.9     | 3.4           |
| Total                                       | 965 000                  | 100.0   | 34.3          |
| Without nutrient deficiencies               |                          |         |               |
| Renal insufficiency only                    | 230 000                  | 12.4    | 8.2           |
| ACI, no renal insufficiency                 | 554 000                  | 30.0    | 19.7          |
| Renal insufficiency and ACI                 | 120 000                  | 6.5     | 4.3           |
| UA                                          | 945 000                  | 51.1    | 33.6          |
| Total                                       | 1 849 000                | 100.0   | 65.7          |
| Total, all anemia                           | 2 814 000                | NA      | 100.0         |

ACI: Anemia of chronic inflammation UA: Unexplained anemia

### Σιδηροπενική Αναιμία

### A. Iron deficiency

Increased iron losses

Peptic ulcer (gastric, duodenal, Cameron's esophagitis)

Benign or malignant neoplasms: colon, stomach, oesophagus, small intestine

Use of NSAIDs

Inflammatory bowel disease: ulcerative colitis, Crohn's disease Intestinal parasitosis

Vascular disorders: angiodysplasia, hereditary haemorrhagic telangiectasia, gastric antral vascular ectasia Genitourinary losses

Decreased absorption of iron

Celiac disease, Whipple's syndrome, lymphangiectasis, bacterial overgrowth, gastric atrophy, gastrectomy, intestinal resection or bypass Medication: AntiH<sub>2</sub>, PPIs, antacids, etc.

Excess fibre in the diet (especially in vegetarians), phenolic compounds in tea and coffee, soy (however, absorption of iron increases with intake of fermented foods and proteins)

### Αναιμία από έλλειψη B12, folate

### B. Vitamin B deficiency<sub>12</sub>

Inadequate intake: strict vegetarians, alcoholism, malnutrition

Gastric diseases: pernicious anaemia, gastrectomy, chronic atrophic gastritis

Diseases of the small intestine: malabsorption syndromes, ileal resection or

bypass, Ileal Crohn's disease, blind loop syndrome

Pancreatic disease: pancreatic failure

Drugs: PPI and anti- $H_2$ , metformin, colchicine, neomycin, cholestyramine

### C. Folate deficiency

Nutritional deficiency: alcoholism, drug addiction, inadequate intake, highly cooked foods

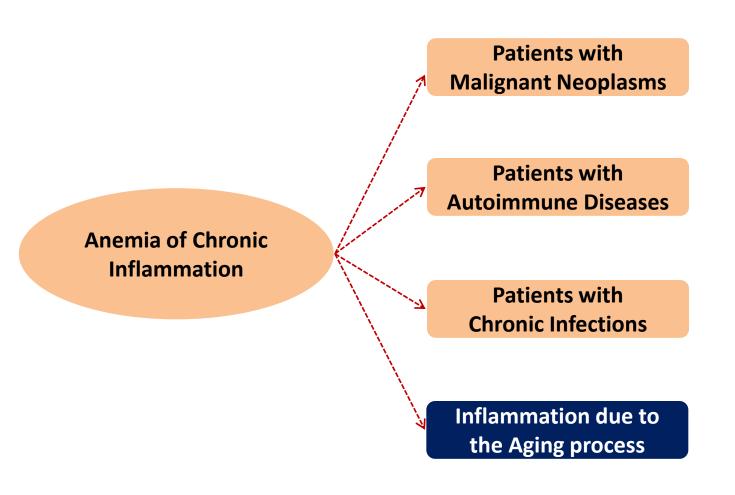
Malabsorption: inflammatory bowel disease, celiac disease, short bowel syndrome, other small intestinal diseases

Drugs: methotrexate, trimethoprim, sulfasalazine, phenytoin Increased requirements: haemolysis, exfoliative dermatitis

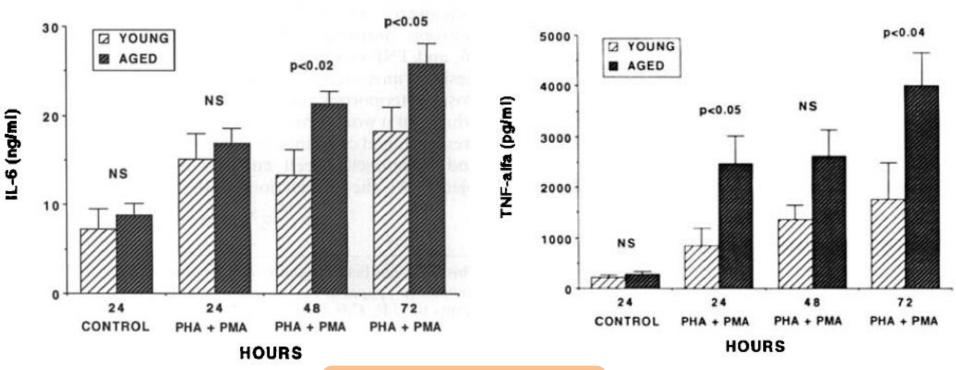
## Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia

|                                  | •                                                  |               |              |
|----------------------------------|----------------------------------------------------|---------------|--------------|
| Characteristic                   | Total nonanemic population 65 y and older n = 1822 | ACI<br>n = 55 | UA<br>n = 78 |
| Mean age, y                      | 74.9                                               | 75.0†         | 76.7*        |
| Women, %                         | 56.6                                               | 38.2*         | 47.4         |
| African American, %              | 15.1                                               | 43.6*         | 30.8*        |
| Mexican American, %              | 17.5                                               | 12.7          | 7.7          |
| Mean hemoglobin level            | 14.2                                               | 11.8*         | 11.8*        |
| Less than 110 g/L, %             | NA                                                 | 9.1           | 11.5         |
| Less than 100 g/L, %             | NA                                                 | 3.6           | 1.3          |
| Condition, %                     |                                                    |               |              |
| Hypertension                     | 66.8                                               | 69.1          | 68.0         |
| Arthritis                        | 45.4                                               | 63.6*         | 56.4         |
| Diabetes, all                    | 18.8                                               | 32.7*         | 23.1         |
| Insulin-treated diabetes         | 4.8                                                | 12.7          | 5.1          |
| Congestive heart failure         | 9.0                                                | 12.7          | 7.7          |
| Asthma                           | 4.3                                                | 3.6           | 3.9          |
| Stroke                           | 9.3                                                | 16.4          | 11.5         |
| Cancer, past 2 y                 | 1.6                                                | 1.8           | 5.1          |
| Cancer more than 2 y ago         | 6.4                                                | 5.5           | 11.5         |
| Recent surgery, past 12 mo       | 0.4                                                | 1.8           | 2.6*         |
| Hepatitis C antibody positive    | 1.3                                                | 3.6           | 3.9          |
| Elevated CRP level, greater than |                                                    |               | `            |
| 1.0 mg/dL                        | 11.2                                               | 27.3*†        | 9.0          |
| Rheumatoid factor positive, 30   |                                                    |               |              |
| IU/mL and higher                 | 6.1                                                | 20.0*         | 9.0          |

Anemia of Chronic Inflammation


- Low serum iron
- Normal iron stores

### Anemia of Chronic Inflammation


- More Arthritis
- More Diabetes (DM)
- More Insulin-treated
   DM
  - More CHF
- More Stroke
- Increased CRP

Blood. 2004;104:2263-2268

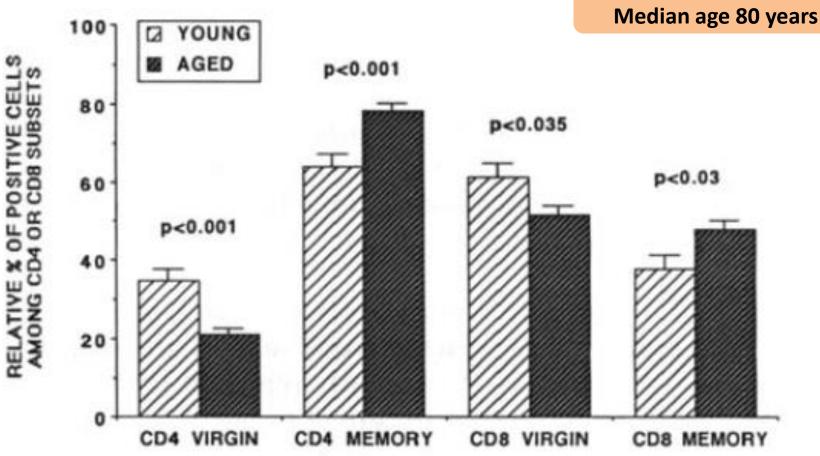
### Is aging an inflammatory process?



## Increased cytokine production in mononuclear cells of healthy elderly people\*



Young healthy donors: Median age 25 years


Elderly healthy donors: Median age 80 years

Eur. J. Immunol. 1993. 23: 2375-2378

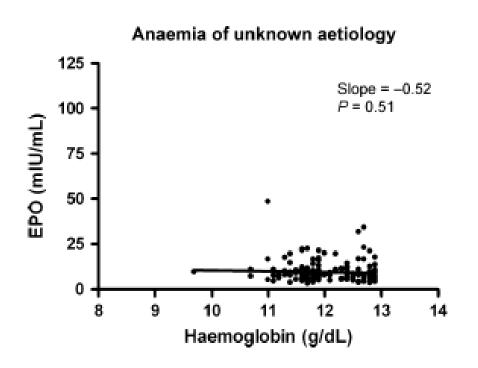
Increased cytokine production in mononuclear cells of healthy elderly people\*

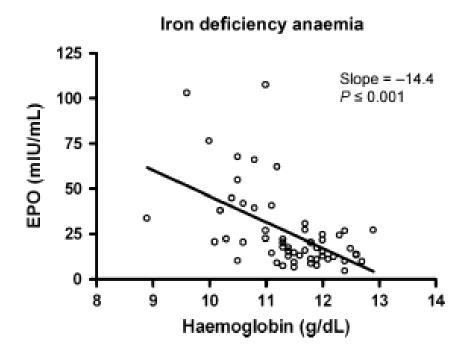
Young healthy donors: Median age 25 years

Elderly healthy donors: Median age 80 years

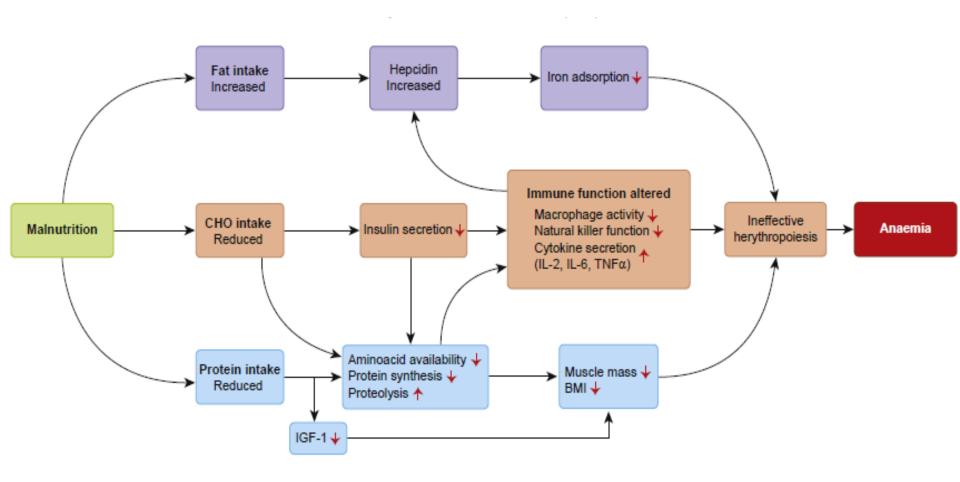


Eur. J. Immunol. 1993. 23: 2375-2378

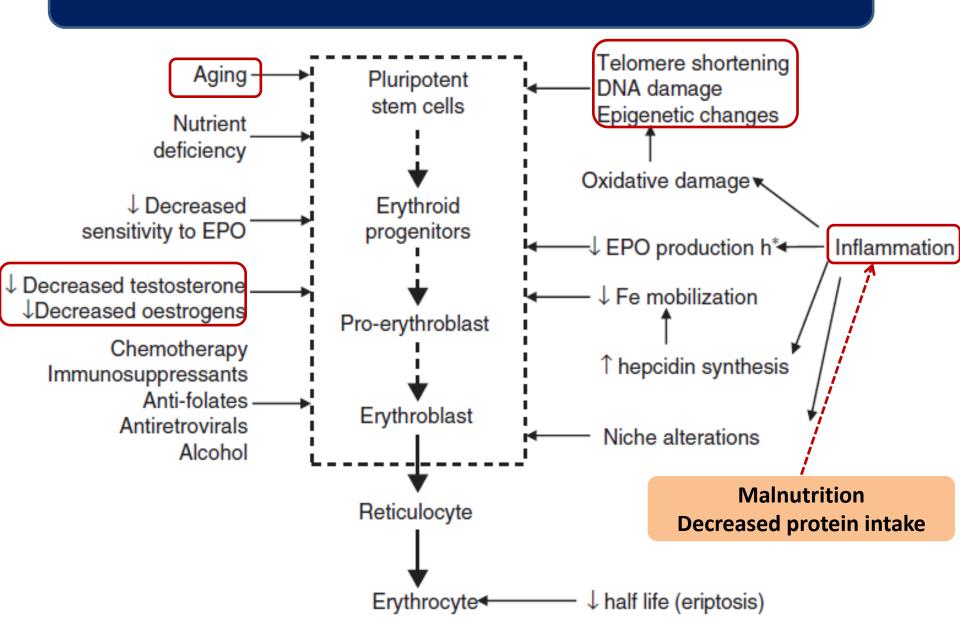

### **Unexplained Anemia**


- 10% 30% of individuals ≥ 65 years with anemia
- The percentage depends on the robustness of diagnostic methodology
- Most individuals present with mild anemia
- Hb < 11.0gr/dl in approximately 10%</li>
- Hb < 10.0gr/dl in approximately 1.5%</li>
- Multifactorial origin
- Myelodysplastic syndromes?

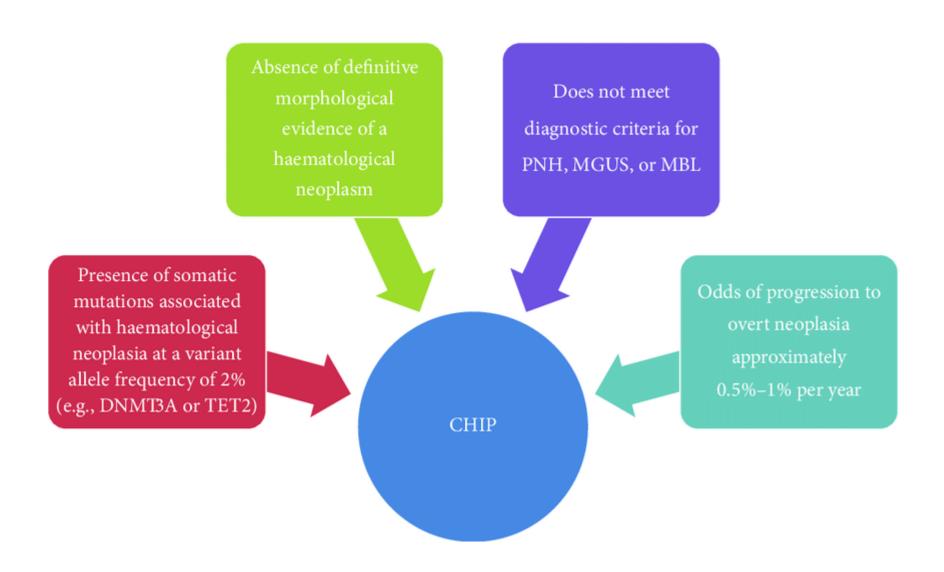
## Erythropoietin, GDF15, IL6, hepcidin and testosterone levels in a large cohort of elderly individuals with anaemia of known and unknown cause


|              | Contro  | Anaemia of<br>unknown aeti<br>Control (AUE) |    | own aetiology   | ology           |  |
|--------------|---------|---------------------------------------------|----|-----------------|-----------------|--|
|              | n       |                                             | n  |                 | <i>P</i> -value |  |
| IL6 (pg/mL)  |         |                                             |    |                 |                 |  |
| Men          | 24      | $1.4 \pm 1.4$                               | 34 | $1.5 \pm 1.3$   | NS              |  |
| Women        | 23      | $1.7 \pm 1.6$                               | 23 | $1.4 \pm 1.4$   | NS              |  |
| ÉPO (mIU/m   | nL)     |                                             |    |                 | ,               |  |
| Men          | 80      | $7.4 \pm 2.9$                               | 72 | 10.0 ± 7.0**    | 0.003           |  |
| Women        | 83      | $7.1 \pm 2.7$                               | 80 | 8.6 ± 4.0**     | 0.005           |  |
| Testosteron  | e (ng/m | nL)                                         |    |                 |                 |  |
| Men          | 79      | $9.8 \pm 7.7$                               | 72 | $7.6 \pm 4.0**$ | 0.03            |  |
| Hepcidin (ng | j/mL)   |                                             |    |                 |                 |  |
| Men          | 25      | $132 \pm 79$                                | 34 | $152 \pm 69$    | NS              |  |
| Women        | 23      | $148 \pm 74$                                | 23 | $192 \pm 105$   | NS              |  |

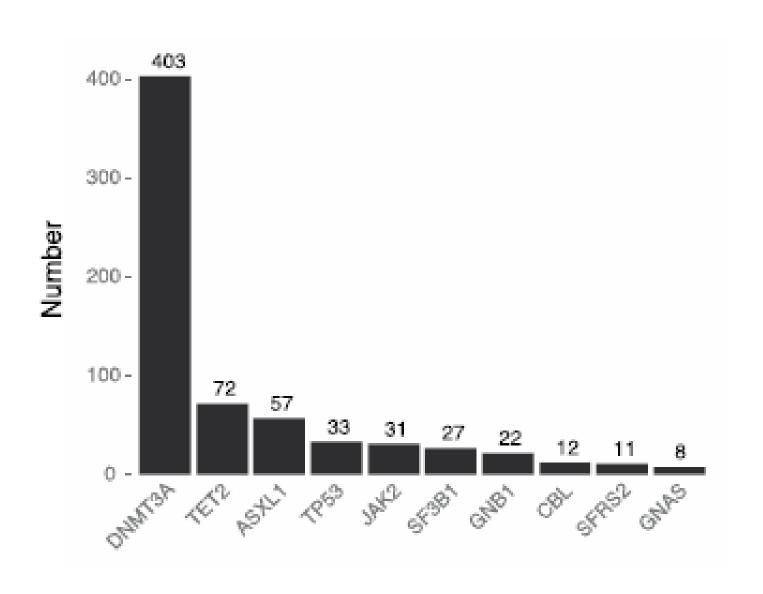
## Erythropoietin, GDF15, IL6, hepcidin and testosterone levels in a large cohort of elderly individuals with anaemia of known and unknown cause



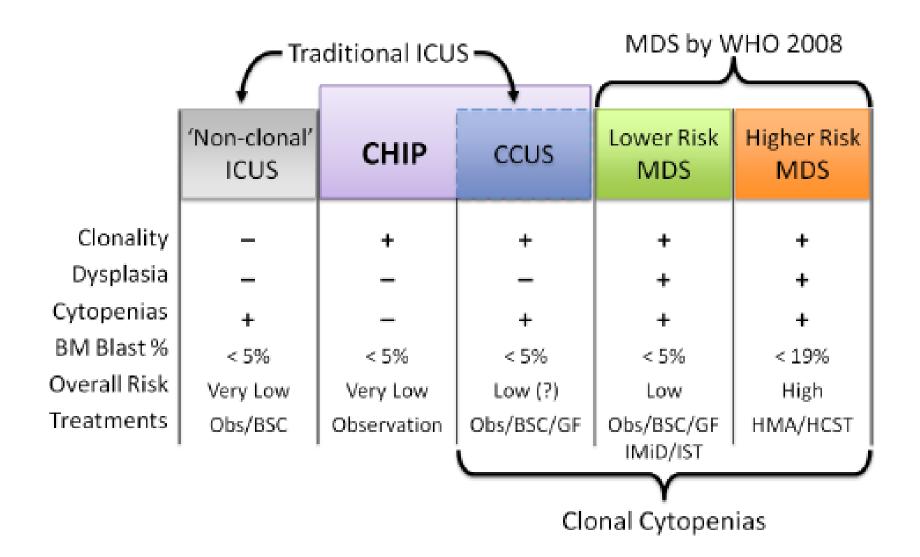




### Role of nutrition on anemia in elderly

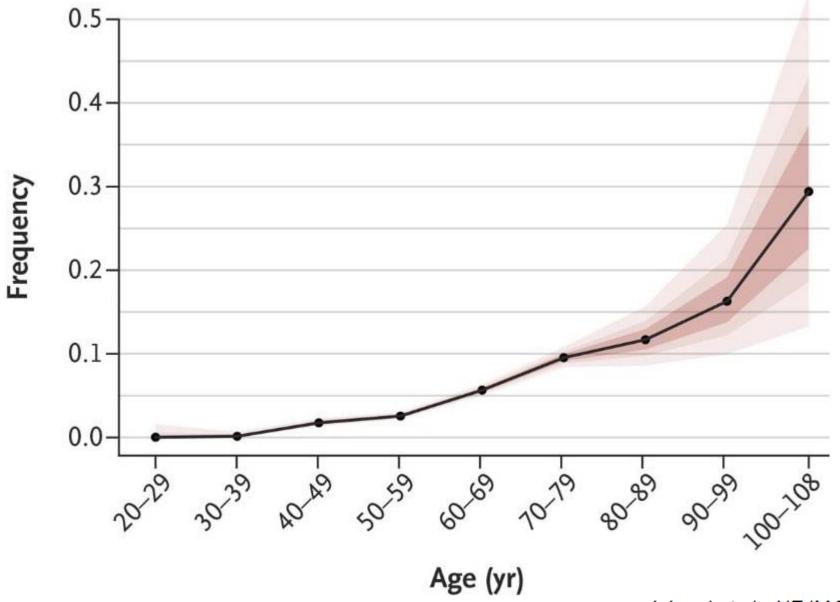



### Pathogenesis of Unexplained Anemia of the Elderly

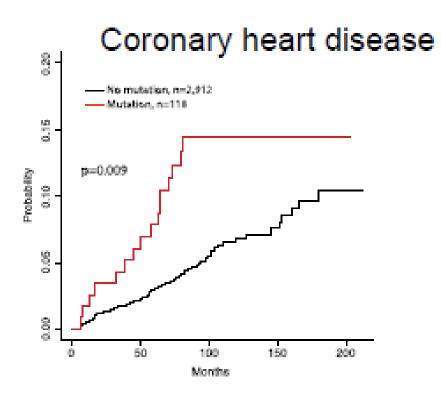



### **Clonal Hematopoiesis of Indeterminate Potential (CHIP)**




### **DNMT3A** is frequently mutated in CHIP




### Clonal Hematopoiesis of Indeterminate Potential (CHIP)



### **Clonal Hematopoiesis of Indeterminate Potential (CHIP)**

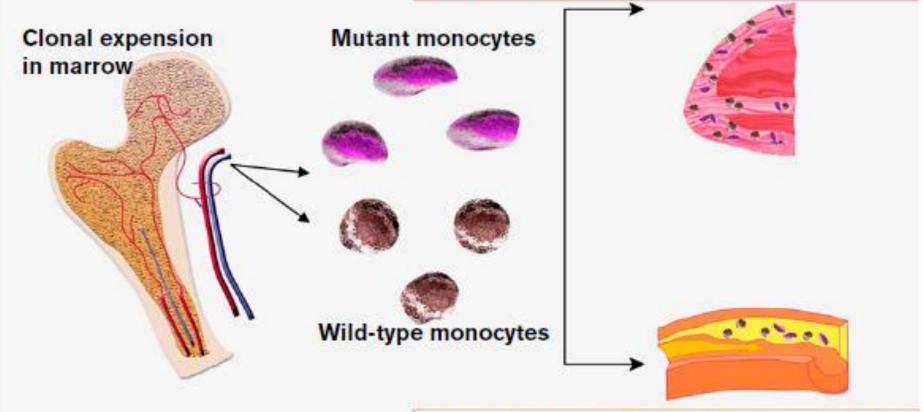


## Clonal hematopoiesis is associated with higher risk of heart attack and stroke



Stroke 3 Mutation, n=123 Probability p = 0.005100 150 200 Months:

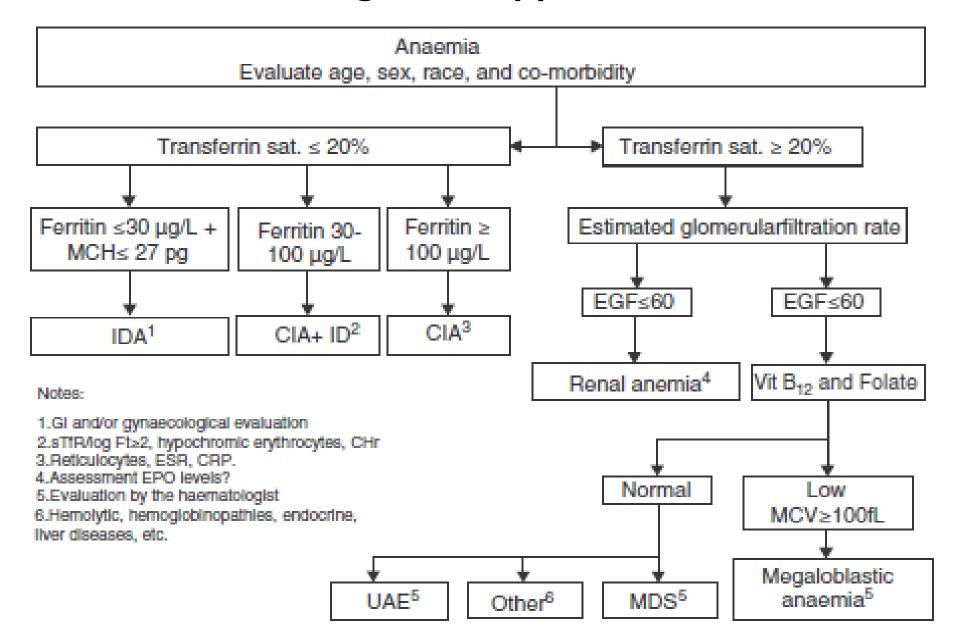
HR 2.0, 95% CI 1.2-3.4, p=0.018


HR 2.6, 95% CI 1.4 to 4.8, p=0.003

Regression models were adjusted for age, sex, BMI, lipids, blood pressure, and smoking

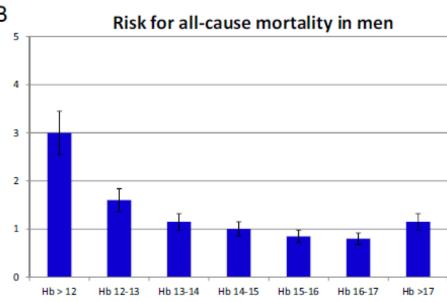
### Mechanism of Cardiovascular Events in Clonal Hematopoiesis

#### Circulating clonal monocytes infiltrate myocardium


- NLRP3 inflammasome activated; 1L-1ß secreted.
- · Disordered cardiac remodeling
- · Heart failure develops or worsens



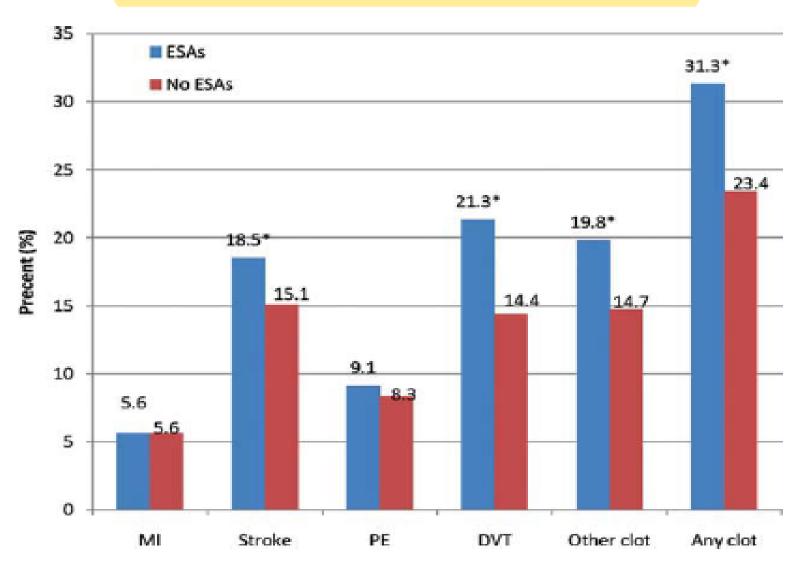

#### Circulating clonal monocytes traffic to atherosclerotic plaques


- Differentiate to macrophages and infiltrate endothelium/plaque
- NLRP3 inflammasome activated; 1L-1ß secreted
- Increased P-selectin upregulation recruits more macrophages
- Atherosclerotic plaque thickens or ruptures

### Diagnostic approach



### **Anemia: Risk for all-cause mortality**






### **Treatment**

- Treatment of the underlying disorder
- Patients in need for transfusion rarely have unexplained anemia
- Treatment with ESA (erythropoietin stimulating agents)
- 1. Patients with renal failure
- Patients without renal failure?
  - ✓ Only in the context of a clinical trial
  - ✓ Therapeutic target: Hb≈10gr/dl

Complications Associated With Erythropoietin-Stimulating Agents in Patients With Metastatic Breast Cancer



# Studies of Epo for the treatment of chemotherapy induced anemia with a detrimental effect on survival of cancer patients

| Study                             | Neoplasm                   | Treatment                   | ESA                  | Hb Goal                  |
|-----------------------------------|----------------------------|-----------------------------|----------------------|--------------------------|
| Henke et al <sup>19</sup>         | Head and neck              | Radiotherapy                | Epoetin $\beta$      | >14 (women)<br>>15 (men) |
| Hedenus et al <sup>18</sup>       | Lymphomas                  | Chemotherapy                | Darbepoetin $\alpha$ | >14 (women)<br>>15 (men) |
| Leyland Jones et al <sup>17</sup> | Breast                     | Chemotherapy                | Epoetin $\alpha$     | >14                      |
| Wright et al <sup>16</sup>        | Non-small cell lung cancer | Radiotherapy                | Epoetin α            | >14                      |
| Overgaard et al <sup>15</sup>     | Head and neck              | Radiotherapy                | Darbepoetin α        | >15.5                    |
| PREPARE <sup>14</sup>             | Breast                     | Chemotherapy                | Darbepoetin α        | >13                      |
| Thomas et al <sup>13</sup>        | Cervix                     | Chemoradiotherapy           | Darbepoetin α        | >14                      |
| Smith et al <sup>12</sup>         | Solid tumors               | No antineoplastic treatment | Darbepoetin α        | >13                      |
|                                   |                            |                             |                      |                          |

### **Anemia in elderly**

- Chronic inflammation
- Malnutrition: reduced protein intake
- Sex hormone deficiency
- Treat the underlying disorder not the hemoglobin